Los ácidos carboxílicos constituyen un grupo de compuestos, caracterizados porque poseen un grupo funcional llamado grupo carboxilo o grupo carboxi (–COOH). En el grupo funcional carboxilo coinciden sobre el mismo carbono un grupo hidroxilo (-OH) y carbonilo (-C=O). Se puede representar como -COOH o -CO2H.
Debido a que el ácido fórmico tiene un hidrógeno unido al carboxilo, esto le da un cierto carácter de aldehído que no presentan otros ácidos carboxílicos, por lo que se considera como un ácido muy peculiar e inclusive independiente del resto de los ácidos carboxílicos. Los ácidos carboxílicos se nombran con la ayuda de la terminación –oico o –ico que se une al nombre del hidrocarburo de referencia y anteponiendo la palabra ácido:
Ejemplo
CH3-CH2-CH3 propano CH3-CH2-COOH Ácido propanoico (propan + oico)
Los nombres triviales de los ácidos carboxílicos se designan según la fuente natural de la que inicialmente se aislaron. Se clasificaron así:
En el sistema IUPAC los nombres de los ácidos carboxílicos se forman reemplazando la terminación “o” de los alcanos por “oico”, y anteponiendo la palabra ácido.
El esqueleto de los ácidos alcanoicos se enumera asignando el n.º 1 al carbono carboxílico y continuando por la cadena más larga que incluya el grupo COOH.
HOCH3-CH3-CH=CH-CH(CH3-CH=CH3)-CHBr-COOH
En este compuesto aparte del grupo funcional COOH, hay una función alcohol, pero de acuerdo a su importancia y relevancia el grupo COOH es el principal; por lo tanto el grupo alcohol se lo nombra como sustituyente. Por lo tanto el nombre de este compuesto es: Ácido 3-alil-2-bromo-7-hidroxi-4-heptenoico.
La palabra carboxi también se utiliza para nombrar al grupo COOH cuando en la molécula hay otro grupo funcional que tiene prioridad sobre él.
Para mayores detalles, consulte Nomenclatura de ácidos carboxílicos
Ácido palmítico o ácido hexadecanoico, se representa con la fórmula CH3(CH2)14COOH
Otros ácidos carboxílicos importantes:
De acuerdo a su nombre IUPAC, los ácidos carboxílicos son ácidos de Brønsted-Lowry; los dos átomos de oxígeno son electronegativos y tienden a atraer a los electrones del átomo de hidrógeno del grupo hidroxilo con lo que se debilita el enlace, produciéndose en ciertas condiciones una ruptura heterolítica, cediendo el correspondiente protón o hidrón, H+, y quedando el resto de la molécula con carga -1 debido al electrón que ha perdido el átomo de hidrógeno, por lo que la molécula queda como R-COO-.
Además, en este anión, la carga negativa se distribuye (se deslocaliza) simétricamente entre los dos átomos de oxígeno, de forma que los enlaces carbono-oxígeno adquieren un carácter de enlace parcialmente doble.
Estos no solo son importantes y esenciales por su propia naturaleza, sino que además son la materia primas al momento de preparar los derivados de acilo, tales como : los cloruros de ácido, los ésteres,las amidas, y los tioésteres. Sin contar que en la mayoría de las rutas biológicas están presentes.
Generalmente los ácidos carboxílicos son ácidos débiles, con solo un 1% de sus moléculas disociadas para dar los correspondientes iones, a temperatura ambiente y en disolución acuosa.
Pero sí son más ácidos que otros, en los que no se produce esa deslocalización electrónica, como por ejemplo los alcoholes. Esto se debe a que la estabilización por resonancia o deslocalización electrónica, provoca que la base conjugada del ácido sea más estable que la base conjugada del alcohol y por lo tanto, la concentración de protones provenientes de la disociación del ácido carboxílico sea mayor a la concentración de aquellos protones provenientes del alcohol; hecho que se verifica experimentalmente por sus valores relativos menores de pKa. El ion resultante, R-COO-, se nombra con el sufijo "-ato".
Por ejemplo, el anión procedente del ácido acético se llama ion acetato. Al grupo RCOO- se le denomina carboxilato.
A continuación se analizará el comportamiento ácido-base de diversos ácidos carboxílicos
Los aniones carbonato y bicarbonato son bases más fuertes que los aniones formato y carboxilato.
El ácido fórmico fue aislado en 1671 por primera vez por el naturalista inglés John Ray destilándolo a partir de un lote de hormigas rojas (Formica rufa) machacadas y maceradas.
El ácido acético es producido por biosíntesis bacteriana, a partir de la fermentación acética por Acetobacter. El microorganismo transforma el alcohol etílico en ácido acético, la sustancia característica del vinagre. La fermentación acética del vino proporciona el vinagre debido a un exceso de oxígeno y es uno de los fallos del vino, un proceso que degrada sus cualidades. Hoy en día, la ruta biológica proporciona cerca del 10% de la producción mundial, pero sigue siendo importante en la producción del vinagre, dado que las leyes mundiales de pureza de alimentos estipulan que el vinagre para uso en alimentos debe ser de origen biológico. Cerca del 75% del ácido acético hecho en la industria química es preparada por carbonilación del metanol, explicada más adelante. Los métodos alternativos (como isomerización de formiato de etilo, conversión de gas de síntesis, oxidación de etileno y etanol) aportan el resto.
El ácido propiónico se produce biológicamente del desdoblamiento metabólico de ácidos grasos con carbonos impares, y de algunos aminoácidos. Las bacterias del género Propionibacterium lo catabolizan como producto final de su metabolismo anaerobio durante el ciclo del Wood-Werkman. Estas bacterias se encuentran comúnmente en los estómagos de rumiantes, y su actividad es parcialmente responsable del olor del queso suizo y del sudor.
Todos los ácidos grasos se pueden extraer en mayor o menor medida de fuentes lipídicas de origen animal o vegetal, generalmente por saponificación de grasas, acidificación y separación primero por destilación o por cromatografía. El ácido cítrico fue el primer ácido aislado en 1784 por el químico sueco Carl Wilhelm Scheele, quien lo precipitó con óxido de calcio y lo recristalizó a partir del jugo del limón. La producción industrial del ácido cítrico comenzó en 1860, basada en la industria italiana de los cítricos. En 1893, C. Wehmer descubrió que cultivos de penicillium podían producir ácido cítrico a partir de la sacarosa. Sin embargo, la producción microbiana del ácido cítrico no llegó a ser industrialmente importante hasta la Primera Guerra Mundial que interrumpió las exportaciones italianas de limones. En 1917, los químicos americanos James Currie y Claudio Colán descubrieron que ciertos cultivos de Aspergillus niger podían ser productores eficientes de ácido cítrico, y dos años más tarde Pfizer comenzó la producción a escala industrial usando esta técnica.
De acuerdo a las estrategias del análisis retrosintético, se considerarán los métodos conforme a:
De acuerdo a la escala a la que realiza la síntesis, se pueden clasificar las síntesis en industriales y de laboratorio.
NaOH + CO → HCOONa
El formiato sódico (HCOONa) posteriormente se hace reaccionar con un ácido para formar el ácido fórmico y la sal sódica del ácido.
H2C=CH2 + H2O + CO → CH3CH2COOH. Tales reacciones son llamadas algunas veces como "Química de Reppe". Estas reacciones requieren metales de transición como el rodio como catalizadores pues se enlazan al CO y lo activan. En la síntesis industrial de Ibuprofeno, se parte de alcohol benzílico que se convierte en el correspondiente ácido carboxílico en una reacción catalizada por paladio:
Un caso histórico del uso de este método es la síntesis de Strecker. La primera síntesis conocida de un aminoácido se realizó en 1850 en el laboratorio de Adolph Strecker en Tubingen, Alemania. Strecker añadió acetaldehído a una solución acuosa de amoniaco y ácido cianhídrico. El producto que se obtuvo fue α-amino propionitrilo, que Strecker hidrolizó a alanina racémica. La síntesis de Strecker es una serie de reacciones químicas que permiten la síntesis de un α-aminoácido partiendo de un aldehído o una cetona.
El ácido glutárico se puede preparar mediante la apertura de anillo de butirolactona con cianuro de potasio para dar una mezcla de carboxilato de potasio-nitrilo que se hidroliza para dar el diácido. Alternativamente, la hidrólisis, seguida de la oxidación de dihidropirano, da el ácido glutárico.
También se puede preparar a partir de la reacción de 1,3-dibromopropano con sodio o cianuro de potasio para obtener el dinitrilo, seguido de hidrólisis.
El anhídrido maleico dimeriza en una reacción fotoquímica para formar dianhídrido ciclobutano tetracarboxílico (CBTA). La hidrólisis de este compuesto forma el ácido ciclobutano 1,2,3,4-tetracarboxílico.
Dieterle et al.ácido adípico por la oxidación del aceite de ricino con ácido nítrico. Históricamente, el ácido adípico ha sido preparado de diferentes formas usando oxidación. Un método clásico es por la ozonólisis oxidativa del ciclohexeno. Actualmente el ácido adípico es producido por la mezcla de ciclohexanol y ciclohexanona llamada "aceite KA", que proviene de la abreviación "ketone-alcohol" ("cetona-alcohol"). El aceite KA es oxidado con ácido nítrico para procesar el ácido adípico. Al comienzo de la reacción el ciclohexanol es convertido en cetona, liberando óxido nitroso:
prepararonEntre sus varias reacciones, el ciclohexano se torna nitroso, determinando la etapa para la escisión del enlace C-C:
Como un ejemplo de la reacción de una monohalogenocetona, Favorskii examinó la α-clorociclohexanona, obteniendo después de la acidificación de la solución el carboxilato del ácido ciclopentanocarboxílico. Este tiempo de reacción fue especialmente notable porque fue desarrollado a partir del anillo de carbono de seis miembros a un anillo de cinco carbonos.
Muchas reacciones conducen a ácidos carboxílicos, pero son usadas solo en casos muy específicos, o principalmente son de interés académico:
Entonces, luego de haber obtenido la sal, podemos calentar la misma para llegar a la amida mediante deshidratación.
La reacción general y su mecanismo son los siguientes:Los grupos carboxilos reaccionan con los grupos amino para formar amidas. En el caso de aminoácidos que reaccionan con otros aminoácidos para dar proteínas, al enlace de tipo amida que se forma se denomina enlace peptídico. Igualmente, los ácidos carboxílicos pueden reaccionar con alcoholes para dar ésteres, o bien con halogenuros para dar halogenuros de ácido, o entre sí para dar anhídridos. Los ésteres, anhídridos, halogenuros de ácido y amidas se llaman derivados de ácido.
Escribe un comentario o lo que quieras sobre Carboxilo (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)