x
1

Difeomorfismo



En topología diferencial, un difeomorfismo es un isomorfismo en la categoría de las variedades diferenciables (es decir, un difeomorfismo es un homeomorfismo diferenciable con inversa diferenciable). Como tal un difeomorfismo es una aplicación que posee aplicación inversa, por supuesto estas dos aplicaciones son diferenciables.

Dadas dos variedades y , una aplicación es un difeomorfismo si es un homeomorfismo diferenciable con inversa diferenciable. Si estas aplicaciones son r veces continuamente diferenciables, esto es son miembros de entonces f es un Cr-difeomorfismo o difeomorfismo de clase Cr.

Dos variedades y son difeomorfas si existe un difeomorfismo f entre ellas.

Las transformaciones regulares son llamadas difeomorfismos de la clase

Una aplicación de es regular si:

Dado un subconjunto de una variedad y un subconjunto , una función es diferenciable (suave) si para cada existen un entorno y una función diferencialbe (suave) tal que (nótese que g es una extensión de f). Se dice además que f es un difeomorfismo si es biyectiva, diferenciable y su inversa diferenciable.

Ejemplo canónico. Si U, V son subconjuntos abiertos conexos de tales que V es además simplemente conexo, una aplicación diferenciable f : UV es un difeomorfismo, si es una aplicación propia y si la aplicación progrediente o diferencial Dfx : RnRn es biyectiva en todo punto x de U.

Comentario 1. Es esencial que U sea simplemente conexo para que la función f sea globalmente invertible (si únicamente se exige la condición de que la derivada sea biyectiva en cualquier punto). Por ejemplo, considérese la "realificación" de la función compleja z2:

Entonces f es suprayectiva y satisface

así Dfx es biyectiva en todos los puntos aunque f no admite inversa, porque no es biyectiva, e.g., f(1,0) = (1,0) = f(−1,0).


Puesto que cualquier variedad puede ser parametrizada localmente mediante , podemos considerar algunas aplicaciones explícitas:




Escribe un comentario o lo que quieras sobre Difeomorfismo (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!