x
1

Axiomas de Peano



Los axiomas de Peano o postulados de Peano son un sistema de axiomas de segundo orden para la aritmética ideados por el matemático Giuseppe Peano en el siglo XIX, para definir los números naturales. Estos axiomas se han utilizado prácticamente sin cambios en diversas investigaciones matemáticas, incluyendo cuestiones acerca de la consistencia y completitud de la aritmética y la teoría de números.

Los publicó en 1889, en un folleto de unas treinta páginas, intitulado Aritmetices principia, nova methodo exposita, que se traduce por Nuevo método de exposición de los principios de la aritmética. Da una lista de nueve axiomas, de los cuales cuatro versan sobre el uso del signo = . Los demás se conocen como "Axiomas de Peano". Los matemáticos los consideran como la plataforma preliminar para forjar los siguientes conjuntos usuales de números. La idea pivotal de Peano fue la de "sucesor".[1]

Los cinco axiomas o postulados de Peano son los siguientes:

Hay un debate sobre si considerar al 0 como número natural o no. Generalmente se decide en cada caso, dependiendo de si se necesita o no. Cuando se resuelve incluir al 0, entonces deben hacerse algunos ajustes menores:

Como se dijo antes existe un debate sobre si incluir al 0 entre los números naturales o no. A continuación se presentan los axiomas de Peano de manera formal, contemplando ambas posibilidades:

Los símbolos que designan los conceptos primitivos son .

El símbolo N designa un predicado monádico que se lee «ser un número natural». El símbolo 1, por su parte, designa una constante que pretende representar al número uno. Y el símbolo x', finalmente, designa una función sobre x que devuelve al sucesor de x. A esta función muchas veces se la escribe S(x). Finalmente, la metavariable representa una fórmula cualquiera de la aritmética, y representa una fórmula cualquiera que tenga a x como variable libre.

Los cinco axiomas de Peano son:

Del quinto axioma existen dos variantes. El primero está formulado en lógica de primer orden, y es en realidad un esquema de axioma. El segundo sí es un axioma, pero está formulado en lógica de segundo orden.

Además de los cinco axiomas, la aritmética de Peano recurre a dos definiciones (de la suma y de la multiplicación), que a veces se presentan como axiomas. A continuación se incluyen todas las variantes:

Los símbolos que designan los conceptos primitivos son .

Axiomas:

Cambiar los axiomas para que incluyan al 0 es solo una cuestión de cambiar toda aparición del 1 por el 0. Sin embargo, en las definiciones (o los axiomas) de suma y de multiplicación hay que hacer algunos leves ajustes más:

Un modelo es una interpretación de los símbolos primitivos que hace verdaderos a todos los axiomas. Por ejemplo, interpretando al símbolo 0 como el número cero, y al predicado N como los números naturales, el primer axioma resulta verdadero, porque es verdad que «el cero es un número natural». Lo mismo ocurre con todos los otros axiomas: bajo las interpretaciones naturales de 0, N y x', cada uno de los axiomas resulta verdadero. Luego, las interpretaciones naturales de los símbolos primitivos son un modelo de la aritmética de Peano.

Originalmente, Peano propuso los axiomas para caracterizar a los números naturales, y los símbolos primitivos se debían interpretar de esta manera natural. Sin embargo, los símbolos que designan a los conceptos primitivos admiten otras interpretaciones, algunas de las cuales serán además modelos. Por ejemplo, se podría interpretar al símbolo 0 como el número dos (para simplificar la explicación no entendemos el cero como par), a N como el predicado «ser un número par», y a x' como el sucesor del sucesor, en vez del sucesor inmediato. En tal caso, los axiomas se tendrían que entender así:

Bajo esta interpretación, todos los axiomas resultan verdaderos, y los axiomas ya no definen a los números naturales, sino a los números pares. También es posible encontrar modelos (es decir, interpretaciones que hagan verdaderos a todos los axiomas) por fuera de la matemática. Por ejemplo, se podría interpretar a 0 como el primer segundo luego del Big Bang, a N como el predicado «ser un segundo», y a x' como el segundo después de x. Bajo esta interpretación (y asumiendo que el tiempo es infinito) los axiomas también resultan verdaderos.

A aquellos modelos que no fueron originalmente planeados se los llama modelos inintencionales (non-intended models), y existen infinitos modelos inintencionales de la aritmética de Peano. Estrictamente hablando, la aritmética de Peano no define el conjunto de los números naturales, sino a la noción más amplia de sucesión matemática o progresión aritmética de los naturales.



Escribe un comentario o lo que quieras sobre Axiomas de Peano (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!