x
1

Principio de exclusión



El principio de exclusión de Pauli es una regla de la mecánica cuántica, enunciada por Wolfgang Ernst Pauli en 1925. Establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico) dentro del mismo sistema cuántico.[1]​ Formulado inicialmente como principio, posteriormente se comprobó que era derivable de supuestos más generales: de hecho, es una consecuencia del teorema de la estadística del espín.[1]

Históricamente el principio de exclusión de Pauli fue formulado para explicar la estructura atómica y la organización de la tabla periódica, y consistía en imponer una restricción sobre la distribución de los electrones en los diferentes estados cuánticos. Posteriormente, el análisis de sistemas de partículas idénticas llevó a la conclusión de que cualquier estado debía tener una simetría bajo intercambio de partículas peculiar, lo cual implicaba que existían dos tipos de partículas: Fermiones, que satisfarían el principio de Pauli, y bosones, que no lo satisfarían.

El principio de exclusión de Pauli estipula que dos Fermiones no pueden ocupar el mismo estado cuántico dentro del mismo sistema al mismo tiempo, mientras que para el caso de los electrones estipula que es imposible para 2 electrones en un mismo átomo tener los mismos 4 valores para los números cuánticos, donde esos 4 números incluyen el número cuántico principal, el número cuántico de momento angular, el número cuántico magnético y por último, el número cuántico de espín. Como se ha dicho, el principio de exclusión de Pauli solo es aplicable a Fermiones , esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero. Son Fermiones, por ejemplo, los electrones y los quarks (estos últimos son los que forman los protones y los neutrones). En cambio, partículas como el fotón, y el (hipotético) gravitón, no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres.

Es sencillo derivar el principio de Pauli, basándonos en el teorema espín-estadístico aplicado a partículas idénticas. Los Fermiones de la misma especie, forman sistemas con estados totalmente antisimétricos, lo que para el caso de dos partículas significa que:

La permutación de una partícula por otra, invierte el signo de la función que describe al sistema. Si las dos partículas ocupan el mismo estado cuántico , el estado del sistema completo es . Entonces:

En este caso, no puede darse porque el ket anterior no representa un estado físico. Este resultado puede generalizarse por inducción al caso de más de dos partículas.

El caso más conocido, por su amplia utilización en el campo de la química y la física atómica, es el sistema cuántico del átomo de Schrödinger, siendo los Fermiones los electrones. Por ello es la versión más conocida de este lema:

Otro fenómeno físico del que es responsable el principio de Pauli, es el ferromagnetismo, en el que el principio de exclusión implica una energía de intercambio que induce al alineamiento paralelo de electrones vecinos (que clásicamente se alinearían antiparalelamente).



Escribe un comentario o lo que quieras sobre Principio de exclusión (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!