x
1

Notación científica



La notación científica, también denominada notación en forma exponencial, es una forma de escribir los números que acomoda valores demasiado grandes (100 000 000 000) o pequeños como puede ser el siguiente (0.000 000 000 01)[1]​para ser escrito de manera convencional.[2][3]​ El uso de esta notación se basa en potencias de 10[4]​ (los casos ejemplificados anteriormente en notación científica, quedarían 1 × 1011 y 1 × 10−11, respectivamente). El módulo del exponente en el caso anterior es la cantidad de ceros que lleva el número delante, en caso de ser negativo (nótese que el cero delante de la coma también cuenta), o detrás, en caso de tratarse de un exponente positivo.

Siempre el exponente es igual al número de cifras decimales que deben correrse para convertir un número escrito en notación científica en el mismo escrito en notación decimal. Se desplazará a la derecha si el exponente es positivo y hacia la izquierda si es negativo. Cuando se trata de convertir un número a notación científica el proceso es a la inversa. [5]

Como ejemplo, en la química, al referirse a la cantidad de entidades elementales (átomos, moléculas, iones, etc.), hay una cantidad llamada cantidad de materia (mol).[6]

Un número escrito en notación científica sigue el siguiente patrón:

El número m se denomina «mantisa» y e el «orden de magnitud».[7]​ La mantisa, en módulo, debe ser mayor o igual a 1 y menor que 10, y el orden de magnitud, dado como exponente, es el número que más varía conforme al valor absoluto.[8]

Observe los ejemplos de números grandes y pequeños: [9][10]

La representación de estos números, tal como se presenta, tiene poco significado práctico. Incluso se podría pensar que estos valores son poco relevantes y de uso casi inexistente en la vida cotidiana. Sin embargo, en áreas como la física y la química, estos valores son comunes.[6]​ Por ejemplo, la mayor distancia observable del universo mide cerca de 740 000 000 000 000 000 000 000 000 m,[11]​ y la masa de un protón es de unos 0.000 000 000 000 000 000 000 000 001 67 kg.[12]

Para valores como estos, la notación científica es más adecuada porque presenta la ventaja de poder representar adecuadamente la cantidad de dígitos significativos.[8][13]​ Por ejemplo, la distancia observable del universo, de modo que está escrito, sugiere una precisión de 27 dígitos significativos. Pero esto no puede ser verdad (es poco probable 25 ceros seguidos en una medición).[6]

El primer intento de representar números demasiado grandes fue emprendido por el matemático y filósofo griego Arquímedes,[14]​ y descrita en su obra El contador de arena,[15]​ en el siglo III a. C. Él desarrolló un sistema de representación numérica para estimar un límite superior para el número de granos de arena necesarios para llenar el universo. Para hacer esto tuvo que estimar el tamaño del universo según el modelo vigente en ese momento y, además, inventar una manera de expresar números muy grandes. El número estimado por él era de 1063 granos.[16][17]

Fue a través de la notación científica que se concibió el modelo de representación de los números reales mediante coma flotante.[18]​ Esa idea fue propuesta por Leonardo Torres y Quevedo (1914), Konrad Zuse (1936) y George Robert Stibitz (1939).[14]​ La codificación en punto flotante de los ordenadores actuales es básicamente una notación científica de base 2.[19]

La programación con el uso de números en notación científica consagró una representación sin superíndices, en el cual la letra e (o E) a mantisa del exponente mantisa. Por lo tanto, 1.785 × 105 e 2.36 × 10−14 se representan, respectivamente, con 1.785E5 y 2.36E-14 (como la mayoría de los lenguajes de programación están basadas en inglés, las comas son sustituidas por puntos).[14]

En la notación científica estándar, el exponente e es elegido de manera que el valor absoluto de m permanezca al menos uno pero menos de diez (1 ≤ | m | <10). Por ejemplo, 350 se escribe como 3.5 ⋅ 10². Esta forma permite una comparación simple de dos números del mismo signo en m, como el exponente e indica el número de la orden de grandeza. En notación estándar el exponente e es negativo para un número absoluto con valor entre 0 y 1 (por ejemplo, menos de la mitad es -5 ⋅ 10−1). El 10 y el exponente son generalmente omitidos cuando el exponente es 0.[20]

En muchas áreas, la notación científica se normaliza de esta manera, a excepción de los cálculos intermedios, o cuando una forma no estándar, tales como la notación de ingeniería, se desea. La notación científica (normalizada) suele llamarse notación exponencial - aunque este último término es más general y también se aplica cuando m no está restringido al intervalo de 1 a 10 (como en la notación de ingeniería, por ejemplo) y para otras bases distintas de 10 (como en 315 ⋅ 220).[21]

La mayoría de calculadoras y programas informáticos están programados para mostrar en notación científica los números excesivamente grandes o pequeños. Pese a esto, por lo general no son capaces de ilustrar "a la manera tradicional" los exponentes de potencias, como por ejemplo 107 (lo mismo ocurre con los subíndices matemáticos). En estos casos recurren a un formato alternativo de representación gráfica de potencias: la notación E, donde la letra E, seguida de un número, representa, literalmente, «multiplicado por diez elevado a» (es decir, "× 10n"). Dicho de otro modo, si tomamos dos números reales m y n, la representación "mEn" significaría exactamente m × 10n.

El carácter e no tiene nada que ver con la constante matemática e (la confusión no es posible cuando se utiliza la letra mayúscula E); y aunque represente un exponente, la notación se refiere generalmente como notación e (científica) o notación E (científica), en vez de notación exponencial (científica) (aunque este última también puede ocurrir).[22]

6.02214151023.[23]ALGOL 68 también permite E minúsculas, por ejemplo 6.0221415e+23.

6.0221415e23, 6.0221415E23, 6.022141523 o 6.0221415⏨23.[24]

6.0221415&23 (o 6.0221415&&23).[25]

La notación de ingeniería difiere de la notación científica normalizada en el cual el exponente e está restringido a múltiplos de 3. Por consiguiente, el valor absoluto de m está en el intervalo 1 ≤ |m| <1000, en lugar de 1 ≤ |m| < 10.[26][27]​ Aunque sea conceptualmente similar, la notación de ingeniería rara vez se la llama notación científica.

Los números de esta forma son fáciles de leer, utilizando los prefijos de magnitud como mega (m = 6), kilo (m = 3), mili (m = −3), micro (m = −6) o nano (m = −9). Por ejemplo, 12.5×10−9 m se puede leer como «doce punto cinco nanómetros» o escrito como 12.5 nm.[26][28]

La notación científica es una forma muy conveniente para escribir números pequeños o grandes y hacer cálculos con ellos. También transmite rápidamente dos propiedades de una medida que son útiles para los científicos, las cifras significativas y orden de magnitud. Escribir en notación científica le permite a una persona eliminar ceros delante o detrás de las cifras significativas. Esto es muy útil para mediciones muy grandes o muy pequeñas en astronomía y en el estudio de moléculas.[2]​ Los siguientes ejemplos pueden demostrarlo.

Una ventaja de la notación científica es que reduce la ambigüedad del número de dígitos significativos. Todos los dígitos en notación científica estándar son significativos por convención. Pero, en notación decimal cualquier cero o una serie de ceros al lado del punto decimal son ambiguos, y puede o no indicar números significativos (cuando ellos deben estar subrayados para hacer explícitos que ellos son ceros significativos). En una notación decimal, los ceros al lado del punto decimal no son, necesariamente, un número significativo. Es decir, pueden estar allí solo para mostrar dónde está el punto decimal. Sin embargo, en notación científica se resuelve esta ambigüedad, porque los ceros que se muestran son considerados significativos por convención.[31]​ Por ejemplo, usando la notación científica, la velocidad de la luz en unidades del SI es 2.99792458×108 m/s y la eminencia es 2,54×10−2 m; ambos números son exactos, por definición, las unidades «pulgadas» por centímetro y m en términos de la velocidad de la luz.[32]​ En estos casos, todas las cifras son significativas. Se puede adicionar un único cero o cualquier número de ceros al lado derecho para mostrar más dígitos significativos, o un único cero con una barra en la parte superior se puede agregar a mostrar infinitos dígitos significativos (así como en notación decimal).

Es habitual en mediciones científicas registrar todos los dígitos significativos de las mediciones, y asumir un dígito adicional, si hubiera cierta información a todos los disponibles para el observador a hacer una suposición. El número resultante es considerado más valioso del que sería sin ese dedo extra, y es considerado una cifra significativa, ya que contiene alguna información que conduce a una mayor precisión en las mediciones y en la agregación de las mediciones (agregarlas o multiplicarlas).

A través de anotaciones adicionales, se puede transmitir información adicional sobre la exactitud. En algunos casos, puede ser útil saber que es el último algoritmo significativo. Por ejemplo, el valor aceptado de la unidad de carga elemental puede ser válidamente expresado como 1.602176487(40)×10−19 C,[33]​ y cuyas cifras aparecen entre paréntesis al final del valor, indican su incertidumbre, específicamente se expresa como 0.000000040×10−19 C, y es un acceso directo a la abreviatura de (1.602176487 ± 0.000000040)×10−19 C.

La notación científica permite una rápida comparación entre varias cantidades homogéneas. Por ejemplo:

Para compararlas con suficiente aproximación basta el cociente entre las potencias de diez:

Es decir, el protón es aproximadamente cuatro órdenes de magnitud (alrededor de 10 000 veces) más masivo que el electrón.[34]

La definición básica de la notación científica permite una infinidad de representaciones para cada valor. Sin embargo, la notación científica estandarizada incluye una restricción: la mantisa (coeficiente) debe ser mayor que o igual a 1 y menor que 10. De ese modo es representado de una manera única.[14]

Para transformar cualquier número a la notación científica estandarizada debemos mover la coma obedeciendo al principio de equilibrio.[8]

Tomemos el ejemplo a continuación:

La notación científica normal requiere que la mantisa (coeficiente) es de entre 1 y 10 en valor absoluto. En esta situación, el valor apropiado sería 2,5375642 (observe que la secuencia de números es la misma, solamente cambia la posición de la coma). Para el exponente, pena el principio de equilibrio: «Cada decimal que disminuye el valor de mantisa aumenta el exponente en una unidad, y viceversa».

En este caso, el exponente es 5.

Observe la transformación paso a paso:







Otro ejemplo, con valores por debajo de 1:

0.0000000475
0.000000475 × 10−1
0.00000475 × 10−2
0.0000475 × 10−3
0.000475 × 10−4
0.00475 × 10−5
0.0475 × 10−6
0.475 × 10−7
4.75 × 10−8

En notación científica estándar, en notación E y la notación de ingeniería, el espacio (el que, en formato de texto, puede ser representado por un espacio normal de ancho o por un espacio delgado), solo se permite antes y después de x, en frente de E o e puede ser omitido, aunque sea menos común que lo haga antes del carácter alfabético.[37]

Para sumar o restar dos números en notación científica, es necesario que los exponentes sean los mismos. Es decir, uno de los valores debe ser transformado para que su exponente sea igual al del otro. La transformación sigue el mismo principio de equilibrio. El resultado probablemente no estará en forma estándar, siendo convertido posteriormente.[39]

Ejemplos:

(no estándar) o (estandarizado)

Multiplicar las mantisas y sumar los exponentes de cada valor. Probablemente, el resultado no será estándar, pero se puede convertir.[39]

Ejemplo:

(no estandarizado) (convertido a notación estándar)

(ya estandarizado sin necesidad de conversión)

Dividir las mantisas y restar los exponentes de cada valor. Probablemente, el resultado no será estándar, pero se puede convertir:[39]

Ejemplos:

(estandarizado)

(no estándar)

La mantisa es elevada al exponente externo y el exponente de base diez se multiplica por el exponente externo.[39]

(estandarizado)

Antes de realizar la radicación es necesario transformar un exponente a un múltiplo del índice. Después de que se hace esto, el resultado es la radicación de la mantisa multiplicada por diez elevado a la relación entre el exponente y el índice de radical.[39]

[40]



Escribe un comentario o lo que quieras sobre Notación científica (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!