El modelo de Black-Scholes o ecuación de Black-Scholes es una ecuación usada en matemática financiera para determinar el precio de determinados activos financieros.
Esta ecuación, basada ampliamente en la teoría de procesos estocásticos, modela variaciones de precios como un proceso de Wiener.
Este modelo matemático, desarrollado por Fisher Black y Myron Scholes, aparece referenciado en 1973, cuando Robert C. Merton lo incluyó en su publicación "Theory of Rational Option Pricing".
A este modelo lo denominó Black-Scholes y fue empleado para estimar el valor actual de una opción europea para la compra (Call), o venta (Put), de acciones en una fecha futura. Posteriormente el modelo se amplió para opciones sobre acciones que producen dividendos, y luego se adoptó para opciones europeas, americanas, y mercado monetario. Los modelos de valoración de opciones son también aplicados actualmente a la valoración de activos intangibles, tales como patentes.
El modelo concluye que:
Escribe un comentario o lo que quieras sobre Modelo de Black-Scholes (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)