x
1

Experimento de la doble rendija



El experimento de Young, más conocido como el experimento de la doble rendija, fue realizado en 1801 por Thomas Young, en un intento de discernir la naturaleza corpuscular u ondulatoria de la luz. Young comprobó un patrón de interferencias en la luz procedente de una fuente lejana al difractarse en el paso por dos rejillas, resultado que contribuyó a la teoría de la naturaleza ondulatoria de la luz. [1]

Posteriormente, la experiencia ha sido considerada fundamental a la hora de demostrar la dualidad onda corpúsculo, una característica de la mecánica cuántica. El experimento también puede realizarse con electrones, protones o neutrones, produciendo patrones de interferencia similares a los obtenidos cuando se realiza con luz.

Aunque este experimento se presenta habitualmente en el contexto de la mecánica cuántica, fue diseñado mucho antes de la llegada de esta teoría para responder a la pregunta de si la luz tenía una naturaleza corpuscular o si, más bien, consistía en ondas viajando por el éter, análogamente a las ondas sonoras viajando en el aire. La naturaleza corpuscular de la luz está basada más que todo en las investigaciones, descubrimientos y trabajos de Newton. La naturaleza ondulatoria, en los trabajos clásicos de Hooke y Huygens.

Los patrones de interferencia observados por estos científicos restaban crédito a la teoría corpuscular. La teoría ondulatoria se mostró muy robusta hasta los comienzos del siglo XX, cuando nuevos experimentos empezaron a mostrar un comportamiento que solo podía ser explicado por una naturaleza corpuscular de la luz. De este modo el experimento de la doble rendija y sus múltiples variantes se convirtieron en un experimento clásico por su claridad a la hora de presentar una de las principales características de la mecánica cuántica.

La forma en la que se presenta normalmente el experimento no se realizó sino hasta 1961 utilizando electrones y mostrando la dualidad onda-corpúsculo de las partículas subatómicas (Claus Jönsson, Zeitschrift für Physik, 161, 454; Electron diffraction at multiple slits, American Journal of Physics, 42, 4-11, 1974). En 1974 fue posible realizar el experimento en su forma más ambiciosa, electrón a electrón, comprobando las hipótesis mecanocuánticas predichas por Richard Feynman. Este experimento fue realizado por un grupo italiano liderado por Pier Giorgio Merli y repetido de manera concluyente en 1989 por un equipo japonés liderado por Akira Tonomura y que trabajaba para la compañía Hitachi. El experimento de la doble rendija electrón a electrón se explica a partir de la interpretación probabilística de la trayectoria seguida por las partículas.

La formulación original de Young es muy diferente de la moderna formulación del experimento y utiliza una doble rendija. En el experimento original un estrecho haz de luz, procedente de un pequeño agujero en la entrada de la cámara, es dividido en dos por una tarjeta de una anchura de unos 0,2 mm. El haz de luz tenía una anchura ligeramente superior al ancho de la tarjeta divisoria por lo que cuando esta se posicionaba correctamente el haz era dividido en dos, cada uno pasando por un lado distinto de la pared divisoria. El resultado puede verse proyectado sobre una pared en una habitación oscurecida. Young realizó el experimento en la misma reunión de la Royal Society mostrando el patrón de interferencias producido demostrando la naturaleza ondulatoria de la luz.

La formulación moderna permite mostrar tanto la naturaleza ondulatoria de la luz como la dualidad onda-corpúsculo de la materia. En una cámara oscura se deja entrar un haz de luz por una rendija estrecha. La luz llega a una pared intermedia con dos rendijas. Al otro lado de esta pared hay una pantalla de proyección o una placa fotográfica. Cuando una de las rejillas se cubre aparece un único pico correspondiente a la luz que proviene de la rendija abierta. Sin embargo, cuando ambas están abiertas en lugar de formarse una imagen de superposición de las obtenidas con las rendijas abiertas individualmente, se obtiene una figura de interferencias con rayas oscuras y otras brillantes.

Este patrón de interferencias se explica fácilmente a partir de la interferencia de las ondas de luz al combinarse la luz que procede de dos rendijas, de manera muy similar a como las ondas en la superficie del agua se combinan para crear picos y regiones más planas. En las líneas brillantes la interferencia es de tipo "constructiva". El mayor brillo se debe a la superposición de ondas de luz coincidiendo en fase sobre la superficie de proyección. En las líneas oscuras la interferencia es "destructiva" con prácticamente ausencia de luz a consecuencia de la llegada de ondas de luz de fase opuesta (la cresta de una onda se superpone con el valle de otra).

Gran parte del comportamiento de la luz se puede modelar utilizando la teoría de ondas clásica. El principio de Huygens-Fresnel es uno de esos modelos; establece que cada punto en un frente de onda genera una ondícula secundaria, y que la perturbación en cualquier punto posterior se puede encontrar sumando las contribuciones de las ondículas individuales en ese punto. Esta suma debe tener en cuenta la fase y la amplitud de las ondícula individuales. Solo se puede medir la intensidad de un campo de luz, esto es proporcional al cuadrado de la amplitud.

En el experimento de doble rendija, las dos rendijas se iluminan con un solo rayo láser. Si el ancho de las rendijas es lo suficientemente pequeño (menor que la longitud de onda de la luz láser), las rendijas difractan la luz en ondas cilíndricas. Estos dos frentes de onda cilíndricos se superponen, y la amplitud, y por lo tanto la intensidad, en cualquier punto de los frentes de onda combinados depende tanto de la magnitud como de la fase de los dos frentes de onda. La diferencia de fase entre las dos ondas está determinada por la diferencia en la distancia recorrida por las dos ondas.

Si la distancia de visualización es grande en comparación con la separación de las rendijas (el campo lejano), la diferencia de fase se puede encontrar utilizando la geometría que se muestra en la figura a la derecha a continuación. La diferencia de ruta entre dos ondas que viajan en un ángulo θ viene dada por:

Donde d es la distancia entre las dos rendijas. Cuando las dos ondas están en fase, es decir, la diferencia de trayectoria es igual a un número integral de longitudes de onda, la amplitud sumada y, por lo tanto, la intensidad sumada es máxima, y cuando están en antifase, es decir, la diferencia de trayectoria es igual a la mitad una longitud de onda, una longitud de onda y media, etc., luego las dos ondas se cancelan y la intensidad sumada es cero. Este efecto se conoce como interferencia. Los máximos de franja de interferencia ocurren en ángulos

donde λ es la longitud de onda de la luz. La separación angular de las franjas, θf, viene dada por

La separación de las franjas a una distancia z de las rendijas viene dada por

Por ejemplo, si dos ranuras están separadas por 0,5 mm (d) y se iluminan con un láser de longitud de onda de 0.6 μm (λ), entonces a una distancia de 1 m (z), la separación de las franjas será de 1,2 mm.

Si el ancho de las rendijas b es mayor que la longitud de onda, la ecuación de difracción de Fraunhofer da la intensidad de la luz difractada como:[2]

Donde la función sinc se define como sinc(x) = sin(x)/x for x ≠ 0, y sinc(0) = 1.

Esto se ilustra en la figura anterior, donde el primer patrón es el patrón de difracción de una sola rendija, dada por la función sinc en esta ecuación, y la segunda figura muestra la intensidad combinada de la luz difractada de las dos rendijas, donde el cos la función representa la estructura fina, y la estructura más gruesa representa la difracción por las rendijas individuales como se describe en la función sinc.

Se pueden hacer cálculos similares para el campo cercano utilizando la ecuación de difracción de Fresnel. A medida que el plano de observación se acerca al plano en el que se ubican las rendijas, los patrones de difracción asociados con cada rendija disminuyen de tamaño, de modo que el área en la que ocurre la interferencia se reduce y puede desaparecer por completo cuando no hay superposición en el dos patrones difractados.[3]

Al igual que el experimento de pensamiento del gato de Schrödinger, el experimento de la doble rendija a menudo se usa para resaltar las diferencias y similitudes entre las diversas interpretaciones de la mecánica cuántica.

La interpretación de Copenhague, presentada por algunos de los pioneros en el campo de la mecánica cuántica, afirma que no es deseable plantear nada que vaya más allá de las fórmulas matemáticas y los tipos de aparatos físicos y reacciones que nos permiten obtener algo de conocimiento de lo que sucede a escala atómica. Una de las construcciones matemáticas que permite a los experimentadores predecir con mucha precisión ciertos resultados experimentales a veces se denomina onda de probabilidad. En su forma matemática es análoga a la descripción de una onda física, pero sus "crestas" y "valles" indican niveles de probabilidad de que ocurran ciertos fenómenos (p. Ej., Una chispa de luz en cierto punto de la pantalla del detector) eso se puede observar en el macro mundo de la experiencia humana ordinaria.

Se puede decir que la "onda" de probabilidad "atraviesa el espacio" porque los valores de probabilidad que uno puede calcular a partir de su representación matemática dependen del tiempo. No se puede hablar de la ubicación de ninguna partícula, como un fotón, entre el momento en que se emite y el momento en que se detecta simplemente porque, para decir que algo se encuentra en algún lugar en un momento determinado, uno tiene que detectarlo. El requisito para la aparición eventual de un patrón de interferencia es que se emitan partículas y que haya una pantalla con al menos dos caminos distintos para que la partícula tome del emisor a la pantalla de detección. Los experimentos no observan nada entre el tiempo de emisión de la partícula y su llegada a la pantalla de detección. Si luego se realiza un trazado de rayos como si una onda de luz (como se entiende en la física clásica) sea lo suficientemente amplia como para tomar ambos caminos, entonces ese trazado de rayos predecirá con precisión la aparición de máximos y mínimos en la pantalla del detector cuando muchas partículas pasan a través del aparato y gradualmente "pintar" el patrón de interferencia esperado.

La interpretación de Copenhague es similar a la formulación integral de la mecánica cuántica proporcionada por Feynman. La formulación integral del camino reemplaza la noción clásica de una trayectoria única para un sistema, con una suma sobre todas las trayectorias posibles. Las trayectorias se suman mediante el uso de la integración funcional.

Cada ruta se considera igualmente probable y, por lo tanto, aporta la misma cantidad. Sin embargo, la fase de esta contribución en cualquier punto dado a lo largo del camino está determinada por la acción a lo largo del camino:

Luego se suman todas estas contribuciones, y la magnitud del resultado final se eleva al cuadrado, para obtener la distribución de probabilidad para la posición de una partícula:

Como siempre es el caso al calcular la probabilidad, los resultados deben normalizarse imponiendo:

Para resumir, la distribución de probabilidad del resultado es el cuadrado normalizado de la norma de la superposición, sobre todas las rutas desde el punto de origen hasta el punto final, de ondas que se propagan proporcionalmente a la acción a lo largo de cada ruta. Las diferencias en la acción acumulativa a lo largo de los diferentes caminos (y, por lo tanto, las fases relativas de las contribuciones) producen el patrón de interferencia observado por el experimento de doble rendija. Feynman enfatizó que su formulación es simplemente una descripción matemática, no un intento de describir un proceso real que podamos medir.

Esta paradoja trata de un experimento mental, un experimento ficticio no realizable en la práctica, que fue propuesto por Richard Feynman[4]​ examinando teóricamente los resultados del experimento de Young analizando el movimiento de cada fotón.

Para la década de 1920, numerosos experimentos (como el efecto fotoeléctrico, el efecto Compton, y la producción de rayos X entre otros) habían demostrado que la luz interacciona con la materia únicamente en cantidades discretas, en paquetes "cuantizados" o "cuánticos" denominados fotones. Si la fuente de luz pudiera reemplazarse por una fuente capaz de producir fotones individualmente y la pantalla fuera suficientemente sensible para detectar un único fotón, el experimento de Young podría, en principio, producirse con fotones individuales con idéntico resultado.

Si una de las rendijas se cubre, los fotones individuales irían acumulándose sobre la pantalla en el tiempo creando un patrón con un único pico. Sin embargo, si ambas rendijas están abiertas los patrones de fotones incidiendo sobre la pantalla se convierten de nuevo en un patrón de líneas brillantes y oscuras. Este resultado parece confirmar y contradecir la teoría ondulatoria de la luz. Por un lado el patrón de interferencias confirma que la luz se comporta como una onda incluso si se envían partículas de una en una. Por otro lado, cada vez que un fotón de una cierta energía pasa por una de las rendijas el detector de la pantalla detecta la llegada de la misma cantidad de energía. Dado que los fotones se emiten uno a uno no pueden interferir globalmente así que no es fácil entender el origen de la "interferencia".

La teoría cuántica resuelve estos problemas postulando ondas de probabilidad que determinan la probabilidad de encontrar una partícula en un punto determinado, estas ondas de probabilidad interfieren entre sí como cualquier otra onda.

Un experimento más refinado consiste en disponer un detector en cada una de las dos rendijas para determinar por qué rendija pasa cada fotón antes de llegar a la pantalla. Sin embargo, cuando el experimento se dispone de esta manera las franjas desaparecen debido a la naturaleza indeterminista de la mecánica cuántica y al colapso de la función de onda.

Las ondas que producen interferencia han de ser "coherentes", es decir los haces provenientes de cada una de las rendijas han de mantener una fase relativa constante en el tiempo, además de mostrar la misma frecuencia, aunque esta última condición no es estrictamente necesaria, puesto que puede hacerse el experimento con luz blanca. Además, ambos han de tener polarizaciones no perpendiculares. En el experimento de Young esto se consigue al hacer pasar el haz por la primera rendija, produciendo una mutilación del frente de onda en dos frentes coherentes. También es posible observar franjas de interferencia con luz natural. En este caso se observa un máximo central blanco junto a otros máximos laterales de diferentes colores. Más allá, se observa un fondo blanco uniforme. Este fondo no está formado realmente por luz blanca, puesto que si, fijada una posición sobre la pantalla, se pone paralelo a la franja un espectrómetro por el cual se hace pasar la luz, se observan alternadamente franjas oscuras y brillantes. Esto se ha dado en llamar espectro acanalado. Las dos rendijas han de estar cerca (unas 1000 veces la longitud de onda de la luz utilizada) o en otro caso el patrón de interferencias solo se forma muy cerca de las rendijas. La anchura de las rendijas es normalmente algo más pequeña que la longitud de onda de la luz empleada permitiendo utilizar las ondas como fuentes puntuales esféricas y reduciendo los efectos de difracción por una única rendija.

Se puede formular una relación entre las separaciones de las rendijas, s, la longitud de onda λ, la distancia de las rendijas a la pantalla D, y la anchura de las bandas de interferencia (la distancia entre franjas brillantes sucesivas), x

Esta expresión es tan solo una aproximación y su formulación depende de ciertas condiciones específicas. Sin embargo, es posible calcular la longitud de onda de la luz incidente a partir de la relación superior. Si s y D son conocidos y x es observado entonces λ puede ser calculado, lo cual es de especial interés a la hora de medir la longitud de onda correspondiente a haces de electrones u otras partículas.



Escribe un comentario o lo que quieras sobre Experimento de la doble rendija (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!