En mecánica estadística y matemáticas, una distribución de Boltzmann (también llamado distribución de Gibbs ) es una distribución de probabilidad, medida de probabilidad, o frecuencia de distribución de partículas en un sistema a través de varios estados posibles. La distribución se expresa en la forma:
Donde E es la energía del estado (que varía de un estado a otro), y kT (una constante de la distribución) es el producto de la constante de Boltzmann y la temperatura termodinámica.
En la mecánica estadística, la distribución de Boltzman es una distribución de probabilidad que da la probabilidad de que un sistema estará en un estado seguro como una función de la energía de ese estado y la temperatura del sistema. Se da como:
Donde pi es la probabilidad del estado i, εi la energía del estado i, k la constante de Boltzmann, T la temperatura del sistema y M es el número de estados accesibles al sistema. La suma es sobre todos los estados accesibles a el sistema de interés. El término sistema de aquí tiene un significado muy amplio; que puede variar desde un simple átomo hasta un sistema macroscópico como un tanque de almacenamiento de gas natural. Debido a esto la distribución de Boltzmann se puede utilizar para resolver una amplia variedad de problemas. La distribución muestra que los estados con la energía más baja siempre tendrá una probabilidad más alta de estar ocupado que los estados con energía más alta.
La proporción de una distribución de Boltzmann calculada para dos estados se conoce como el factor de Boltzmann y característicamente solo depende de la diferencia de energía de los estados.
Se le da el nombre de distribución de Boltzmann por Ludwig Boltzmann, quien formuló por primera vez en 1868 durante sus estudios de la mecánica estadística de gases en equilibrio térmico. La distribución fu posteriormente investigada amplia mente, en su forma moderna, por Josiah Willard Gibbs en 1902. :Ch.IV
La distribución de Boltzman no debe confundirse con la estadística de Maxwell-Boltzmann. El primero da la probabilidad de que un sistema estará en un estado determinado como una función de la energía de ese estado. Cuando se aplica a partículas como átomos o moléculas, que muestra la distribución de partículas sobre los estados de energía. La estadística de Maxwell-Boltzmann se utiliza para describir las velocidades de las partículas en los gases idealizados.
La distribución de Boltzmann es una distribución de probabilidad que da la probabilidad de un cierto estado este como una función de la energía y la temperatura del sistema al que se aplica la distribución de ese estado. Se da como:
Donde pi es la probabilidad del estado i, εi la energía de estado i, k la constante de Boltzmann, T la temperatura del sistema y M es el número de todos los estados accesibles al sistema.función de partición canónica, comúnmente representado por Q (o por algunos autores como Z).
La suma es sobre todos los estados accesibles a el sistema de interés. El denominador en la ecuación anterior también se conoce como la
Por lo tanto, la distribución de Boltzman también se puede escribir como:
La función de partición se puede calcular si conocemos las energías de los niveles accesibles al sistema de interés. Para átomos los valores de la función de partición se pueden encontrar en la base de datos NIST Atómicos Spectra.
La distribución muestra que los estados con menor energía siempre tendrán una mayor probabilidad de estar ocupados que los estados con mayor energía. También nos puede dar la relación cuantitativa entre las probabilidades de los dos estados que están ocupados. La relación de las probabilidades de los estados i y j está dado como:
Donde pi es la probabilidad del estado i, pj la probabilidad del estado j, y εi y εi son las energías de los estados i y j, respectivamente.
La distribución es a menudo utilizada para describir la distribución de partículas, como átomos o moléculas, sobre los estados de energía accesibles a ellos. Si tenemos un sistema compuesto de muchas partículas, la probabilidad de que una partícula esté en el estado i es prácticamente la probabilidad de que, si elegimos una partícula al azar de ese sistema y comprobáramos en que estado se encuentra, nos encontraremos que se está en el estado i. Esta probabilidad es igual al número de partículas en el estado i dividió por el número total de partículas en el sistema, es decir la fracción de partículas que ocupan el estado i.
Donde Ni es el número de partículas en el estado i y N es el número total de partículas en el sistema. Podemos utilizar la distribución de Boltzmann para encontrar esta probabilidad que es, como hemos visto, iguales a la fracción de partículas que se encuentran en el estado i. Así, que la ecuación que da la fracción de partículas en el estado i como una función de la energía de ese estado es
Esta ecuación es de gran importancia para la espectroscopia. En espectroscopia observamos una línea espectral si átomos o moléculas que estamos interesados van de un estado a otro. Para que esto sea posible, debe haber algunas partículas en el primer estado que se someten a la transición. Podemos encontrar que esta condición se cumple mediante la búsqueda de la fracción de partículas en el primar estado. Si es insignificante, la transición es muy probable que no se observe en la temperatura para la cual se realiza el cálculo. En general, una mayor fracción de las moléculas en el primer estado significa un número mayor de transiciones en el segundo estado. Esto da una línea espectral más fuerte. sin embargo, hay otros factores que influyen en la intensidad de una línea espectral, como si es causado por una transición prohibida.
La máquina de Boltzmann es una red estocástica de Hopfield con unidades ocultas y recurrentes que representa la información a partir de una distribución de probabilidad. Los pesos se inician aleatoriamente y la red aprende a través del algoritmo de retrocesión (back-propagation).
El la distribución de Boltzmann aparece en la mecánica estadística cuando se examinan los sistemas aislados (o casi-aislados) de composición fija que se encuentran en equilibrio térmico (equilibrio con respecto al intercambio de energía). El caso más general es la distribución de probabilidad para el conjunto canónico, pero también algunos casos especiales (derivable del ensamble canónico) también muestran la distribución de boltzman en diferentes aspectos:
A pesar de que estos casos tienen similitudes, es útil distinguirlos, ya que generalizan de manera diferente cuando se cambian las suposiciones cruciales:
En el ámbito de matemáticas más general, la distribución de Boltzmann es también conocida como la medida de Gibbs. En estadística y aprendizaje automático se llama un registro-modelo lineal. En aprendizaje profundo, la distribución de Boltzmann es utilizada en la distribución muestral de las redes neuronales estocásticas tales como: las máquinas de Boltzmann, Máquinas de Boltzmann restringidas y Máquinas de Boltzmann profundas.
La distribución de Boltzman se puede introducir para asignar permisos en el comercio de emisiones.
El nuevo método de asignación mediante la distribución de Boltzman puede describirse como la más probable, natural y no sesgada distribución de los permisos de emisión entre varios países. Simple y versátil, este nuevo método tiene potencial para muchas aplicaciones económicas y ambientales.Escribe un comentario o lo que quieras sobre Distribución de Boltzmann (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)