x
1

Conjunto de nivel



Sea un conjunto y un campo escalar sobre . El conjunto de nivel para la función es el subconjunto de puntos en para los cuales .

En símbolos:

Un conjunto de nivel puede coincidir con el conjunto vacío.

Si el conjunto coincide con y el campo escalar es de clase entonces los vectores gradiente del campo escalar son ortogonales a los conjuntos de nivel en el siguiente sentido: Sea un conjunto de nivel y una curva diferenciable. Los vectores gradiente del campo sobre la curva, son ortogonales a los vectores velocidad de la curva.

En efecto, para todo en ,

Derivando respecto de se obtiene (usando la derivada de una composición de funciones)

En particular, las curvas integrales asociadas al campo vectorial generado por el gradiente de son "ortogonales" a los conjuntos de nivel asociadas a dicha función.

En física, estas curvas integrales se las suele llamar líneas de campo o líneas de fuerza, según el contexto.



Escribe un comentario o lo que quieras sobre Conjunto de nivel (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!